Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.407
Filtrar
1.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583438

RESUMO

Kinetochore scaffold 1 (KNL1) is indispensable for generating motile micro-tubule attachments and isolating chromosomes. KNL1 is highly expressed in multiple middle-route tissues and promotes tumor development. However, how it functions in non-small cell lung cancer (NSCLC) is unclear. Real-time quantitative PCR (RT-qPCR) and Western blotting (WB) were used to determine KNL1 expression in NSCLC tissues and cells. The sh-KNL1 or oe-KNL1 was transfected into NSCLC cells. The colony formation assay, cell counting kit-8 (CCK-8) assay, and flow cytometry were used to evaluate cell proliferation and apoptosis. A transwell assay was used to monitor invasion and migration. The CCK-8 assay was used to measure NSCLC cell sensitivity to chemotherapy drugs. WB confirmed the protein levels of apoptosis-related proteins, cell cycle-associated proteins, and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/nuclear factor kappaB (NF-κB) pathway. A PI3K/AKT/NF-κB pathway inhibitor was used to intervene in NSCLC cell transfection along with oe-KNL1, thus revealing the function of the pathway in carcinogenicity mediated by KNL1. In result KNL1 expression was substantially increased in NSCLC tissues and cells. High-level KNL1 expression is related to the poor prognosis of NSCLC patients. KNL1 silencing bolstered promoted NSCLC cell apoptosis and inhibited proliferation, cell cycle progression, invasion, and EMT, whereas KNL1 silencing had the opposite effect. KNL1 knockdown increased NSCLC cell sensitivity to chemical drugs. KNL1 promoted PI3K/AKT/NF-κB pathway activation, while PI3K/AKT/NF-κB pathway inhibition weakened the procancer effect mediated by KNL1 overexpression but had little influence on KNL1 levels. We conclude that KNL1 activates the PI3K/AKT/NF-κB pathway to increase NSCLC progression and attenuate NSCLC sensitivity to chemotherapy drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Cinetocoros/metabolismo , Cinetocoros/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578284

RESUMO

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular , Cinetocoros , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Repetições de Tetratricopeptídeos , Proteínas Serina-Treonina Quinases/metabolismo
3.
Elife ; 122024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629825

RESUMO

Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Centrômero/metabolismo , Cinetocoros/metabolismo , Meiose , Plantas/genética , Resposta ao Choque Térmico , Segregação de Cromossomos
4.
Proc Natl Acad Sci U S A ; 121(12): e2322677121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466841

RESUMO

The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during cell division by monitoring kinetochore-microtubule attachment. Plants produce both sequence-conserved and diverged SAC components, and it has been largely unknown how SAC activation leads to the assembly of these proteins at unattached kinetochores to prevent cells from entering anaphase. In Arabidopsis thaliana, the noncanonical BUB3.3 protein was detected at kinetochores throughout mitosis, unlike MAD1 and the plant-specific BUB1/MAD3 family protein BMF3 that associated with unattached chromosomes only. When BUB3.3 was lost by a genetic mutation, mitotic cells often entered anaphase with misaligned chromosomes and presented lagging chromosomes after they were challenged by low doses of the microtubule depolymerizing agent oryzalin, resulting in the formation of micronuclei. Surprisingly, BUB3.3 was not required for the kinetochore localization of other SAC proteins or vice versa. Instead, BUB3.3 specifically bound to BMF3 through two internal repeat motifs that were not required for BMF3 kinetochore localization. This interaction enabled BMF3 to recruit CDC20, a downstream SAC target, to unattached kinetochores. Taken together, our findings demonstrate that plant SAC utilizes unconventional protein interactions for arresting mitosis, with BUB3.3 directing BMF3's role in CDC20 recruitment, rather than the recruitment of BUB1/MAD3 proteins observed in fungi and animals. This distinct mechanism highlights how plants adapted divergent versions of conserved cell cycle machinery to achieve specialized SAC control.


Assuntos
Arabidopsis , Cinetocoros , Animais , Cinetocoros/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem do Ciclo Celular , Fuso Acromático/metabolismo
5.
J Cell Sci ; 137(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372383

RESUMO

Male meiotic division exhibits two consecutive chromosome separation events without apparent pausing. Several studies have shown that spermatocyte divisions are not stringently regulated as in mitotic cells. In this study, we investigated the role of the canonical spindle assembly (SAC) pathway in Caenorhabditis elegans spermatogenesis. We found the intensity of chromosome-associated outer kinetochore protein BUB-1 and SAC effector MDF-1 oscillates between the two divisions. However, the SAC target securin is degraded during the first division and remains undetectable for the second division. Inhibition of proteasome-dependent protein degradation did not affect the progression of the second division but stopped the first division at metaphase. Perturbation of spindle integrity did not affect the duration of meiosis II, and only slightly lengthened meiosis I. Our results demonstrate that male meiosis II is independent of SAC regulation, and male meiosis I exhibits only weak checkpoint response.


Assuntos
Caenorhabditis elegans , Fuso Acromático , Animais , Masculino , Caenorhabditis elegans/metabolismo , Fuso Acromático/metabolismo , Espermatócitos/metabolismo , Meiose , Cinetocoros/metabolismo , Segregação de Cromossomos , Espermatogênese , Oócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo
6.
EMBO Rep ; 25(4): 1909-1935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424231

RESUMO

Stabilization of microtubule plus end-directed kinesin CENP-E at the metaphase kinetochores is important for chromosome alignment, but its mechanism remains unclear. Here, we show that CKAP5, a conserved microtubule plus tip protein, regulates CENP-E at kinetochores in human cells. Depletion of CKAP5 impairs CENP-E localization at kinetochores at the metaphase plate and results in increased kinetochore-microtubule stability and attachment errors. Erroneous attachments are also supported by computational modeling. Analysis of CKAP5 knockout cancer cells of multiple tissue origins shows that CKAP5 is preferentially essential in aneuploid, chromosomally unstable cells, and the sensitivity to CKAP5 depletion is correlated to that of CENP-E depletion. CKAP5 depletion leads to reduction in CENP-E-BubR1 interaction and the interaction is rescued by TOG4-TOG5 domain of CKAP5. The same domain can rescue CKAP5 depletion-induced CENP-E removal from the kinetochores. Interestingly, CKAP5 depletion facilitates recruitment of PP1 to the kinetochores and furthermore, a PP1 target site-specific CENP-E phospho-mimicking mutant gets stabilized at kinetochores in the CKAP5-depleted cells. Together, the results support a model in which CKAP5 controls mitotic chromosome attachment errors by stabilizing CENP-E at kinetochores and by regulating stability of the kinetochore-attached microtubules.


Assuntos
Proteínas Cromossômicas não Histona , Cinetocoros , Humanos , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Microtúbulos/metabolismo , Metáfase , Cinesinas/genética , Células HeLa , Mitose , Segregação de Cromossomos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
7.
Curr Biol ; 34(5): 1133-1141.e4, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38354735

RESUMO

The outer corona plays an essential role at the onset of mitosis by expanding to maximize microtubule attachment to kinetochores.1,2 The low-density structure of the corona forms through the expansion of unattached kinetochores. It comprises the RZZ complex, the dynein adaptor Spindly, the plus-end directed microtubule motor centromere protein E (CENP-E), and the Mad1/Mad2 spindle-assembly checkpoint proteins.3,4,5,6,7,8,9,10 CENP-E specifically associates with unattached kinetochores to facilitate chromosome congression,11,12,13,14,15,16 interacting with BubR1 at the kinetochore through its C-terminal region (2091-2358).17,18,19,20,21 We recently showed that CENP-E recruitment to BubR1 at the kinetochores is both rapid and essential for correct chromosome alignment. However, CENP-E is also recruited to the outer corona by a second, slower pathway that is currently undefined.19 Here, we show that BubR1-independent localization of CENP-E is mediated by a conserved loop that is essential for outer-corona targeting. We provide a structural model of the entire CENP-E kinetochore-targeting domain combining X-ray crystallography and Alphafold2. We reveal that maximal recruitment of CENP-E to unattached kinetochores critically depends on BubR1 and the outer corona, including dynein. Ectopic expression of the CENP-E C-terminal domain recruits the RZZ complex, Mad1, and Spindly, and prevents kinetochore biorientation in cells. We propose that BubR1-recruited CENP-E, in addition to its essential role in chromosome alignment to the metaphase plate, contributes to the recruitment of outer corona proteins through interactions with the CENP-E corona-targeting domain to facilitate the rapid capture of microtubules for efficient chromosome alignment and mitotic progression.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Mad2/genética , Mitose , Dineínas/metabolismo , Fuso Acromático/metabolismo , Células HeLa
8.
Mol Biol Cell ; 35(4): ar51, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381564

RESUMO

Visualization of specific molecules and their assembly in real time and space is essential to delineate how cellular dynamics and signaling circuit are orchestrated during cell division cycle. Our recent studies reveal structural insights into human centromere-kinetochore core CCAN complex. Here we introduce a method for optically imaging trimeric and tetrameric protein interactions at nanometer spatial resolution in live cells using fluorescence complementation-based Förster resonance energy transfer (FC-FRET). Complementary fluorescent protein molecules were first used to visualize dimerization followed by FRET measurements. Using FC-FRET, we visualized centromere CENP-SXTW tetramer assembly dynamics in live cells, and dimeric interactions between CENP-TW dimer and kinetochore protein Spc24/25 dimer in dividing cells. We further delineated the interactions of monomeric CENP-T with Spc24/25 dimer in dividing cells. Surprisingly, our analyses revealed critical role of CDK1 kinase activity in the initial recruitment of Spc24/25 by CENP-T. However, interactions between CENP-T and Spc24/25 during chromosome segregation is independent of CDK1. Thus, FC-FRET provides a unique approach to delineate spatiotemporal dynamics of trimerized and tetramerized proteins at nanometer scale and establishes a platform to report the precise regulation of multimeric protein interactions in space and time in live cells.


Assuntos
Proteínas Cromossômicas não Histona , Transferência Ressonante de Energia de Fluorescência , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Ciclo Celular , Centrômero/metabolismo , Proteína Centromérica A/metabolismo
9.
J Biol Chem ; 300(3): 105669, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272221

RESUMO

The mitotic spindle contains many bundles of microtubules (MTs) including midzones and kinetochore fibers, but little is known about how bundled structures are formed. Here, we show that the chromosomal passenger complex (CPC) purified from Escherichia coli undergoes liquid-liquid demixing in vitro. An emergent property of the resultant condensates is to generate parallel MT bundles when incubated with free tubulin and GTP in vitro. We demonstrate that MT bundles emerge from CPC droplets with protruding minus ends that then grow into long and tapered MT structures. During this growth, we found that the CPC in these condensates apparently reorganize to coat and bundle the resulting MT structures. CPC mutants attenuated for liquid-liquid demixing or MT binding prevented the generation of parallel MT bundles in vitro and reduced the number of MTs present at spindle midzones in HeLa cells. Our data demonstrate that an in vitro biochemical activity to produce MT bundles emerges after the concentration of the CPC and provides models for how cells generate parallel-bundled MT structures that are important for the assembly of the mitotic spindle. Moreover, these data suggest that cells contain MT-organizing centers that generate MT bundles that emerge with the opposite polarity from centrosomes.


Assuntos
Cromossomos , Microtúbulos , Fuso Acromático , Humanos , Células HeLa , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Animais , Xenopus laevis
10.
Nat Cell Biol ; 26(1): 45-56, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168769

RESUMO

To faithfully segregate chromosomes during vertebrate mitosis, kinetochore-microtubule interactions must be restricted to a single site on each chromosome. Prior work on pair-wise kinetochore protein interactions has been unable to identify the mechanisms that prevent outer kinetochore formation in regions with a low density of CENP-A nucleosomes. To investigate the impact of higher-order assembly on kinetochore formation, we generated oligomers of the inner kinetochore protein CENP-T using two distinct, genetically engineered systems in human cells. Although individual CENP-T molecules interact poorly with outer kinetochore proteins, oligomers that mimic centromeric CENP-T density trigger the robust formation of functional, cytoplasmic kinetochore-like particles. Both in cells and in vitro, each molecule of oligomerized CENP-T recruits substantially higher levels of outer kinetochore components than monomeric CENP-T molecules. Our work suggests that the density dependence of CENP-T restricts outer kinetochore recruitment to centromeres, where densely packed CENP-A recruits a high local concentration of inner kinetochore proteins.


Assuntos
Proteínas Cromossômicas não Histona , Cinetocoros , Humanos , Proteína Centromérica A/genética , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/genética , Centrômero/metabolismo , Nucleossomos , Mitose
11.
Proc Natl Acad Sci U S A ; 121(2): e2316583121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170753

RESUMO

The kinetochore scaffold 1 (KNL1) protein recruits spindle assembly checkpoint (SAC) proteins to ensure accurate chromosome segregation during mitosis. Despite such a conserved function among eukaryotic organisms, its molecular architectures have rapidly evolved so that the functional mode of plant KNL1 is largely unknown. To understand how SAC signaling is regulated at kinetochores, we characterized the function of the KNL1 gene in Arabidopsis thaliana. The KNL1 protein was detected at kinetochores throughout the mitotic cell cycle, and null knl1 mutants were viable and fertile but exhibited severe vegetative and reproductive defects. The mutant cells showed serious impairments of chromosome congression and segregation, that resulted in the formation of micronuclei. In the absence of KNL1, core SAC proteins were no longer detected at the kinetochores, and the SAC was not activated by unattached or misaligned chromosomes. Arabidopsis KNL1 interacted with SAC essential proteins BUB3.3 and BMF3 through specific regions that were not found in known KNL1 proteins of other species, and recruited them independently to kinetochores. Furthermore, we demonstrated that upon ectopic expression, the KNL1 homolog from the dicot tomato was able to functionally substitute KNL1 in A. thaliana, while others from the monocot rice or moss associated with kinetochores but were not functional, as reflected by sequence variations of the kinetochore proteins in different plant lineages. Our results brought insights into understanding the rapid evolution and lineage-specific connection between KNL1 and the SAC signaling molecules.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitose , Cinetocoros/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo , Segregação de Cromossomos
12.
Open Biol ; 14(1): 230379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166399

RESUMO

Wee1 is a cell cycle regulator that phosphorylates Cdk1/Cdc2 and inhibits G2/M transition. Loss of Wee1 in fission yeast results in an early onset of mitosis. Interestingly, we found that cells lacking Wee1 require the functional spindle checkpoint for their viability. Genetic analysis indicated that the requirement is not attributable to the early onset of mitosis. Live-cell imaging revealed that some kinetochores are not attached or bioriented in the wee1 mutant. Furthermore, Mad2, a component of the spindle checkpoint known to recognize unattached kinetochores, accumulates in the vicinity of the spindle, representing activation of the spindle checkpoint in the mutant. It appears that the wee1 mutant cannot maintain stable kinetochore-microtubule attachment, and relies on the delay imposed by the spindle checkpoint for establishing biorientation of kinetochores. This study revealed a role of Wee1 in ensuring accurate segregation of chromosomes during mitosis, and thus provided a basis for a new principle of cancer treatment with Wee1 inhibitors.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cinetocoros/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mitose , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
13.
Toxicol Appl Pharmacol ; 483: 116826, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38228236

RESUMO

Increasing expression of spindle and kinetochore-related complex subunit 3 (SKA3) is related to the progression of multiple malignancies. However, the role of SKA3 in osteosarcoma remains unexplored. The present study aimed to investigate the relevance of SKA3 in osteosarcoma. Preliminarily, SKA3 expression in osteosarcoma was assessed through The Cancer Genome Atlas (TCGA) analysis, which revealed high levels of SKA3 transcripts in osteosarcoma tissues. Subsequent examination of clinical tissues confirmed the abundant expression of SKA3 in osteosarcoma. Downregulation of SKA3 expression in osteosarcoma cell lines resulted in repressive effects on cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT), while upregulation of SKA3 expression had the opposite effect. Gene set enrichment analysis (GSEA) revealed that the Notch pathway is enriched in SKA3 high groups based on different expressed genes from the TCGA data. Further investigation showed that the levels of Notch1, Notch1 intracellular domain (NICD1), hairy and enhancer of split 1 (HES1), and hairy/enhancer-of-split related with YRPW motif protein 1 (HEY1) were downregulated in SKA3-silenced osteosarcoma cells, and upregulated in SKA3-overexpressed osteosarcoma cells. Activation of the Notch pathway by increasing NICD1 expression reversed the antitumour effects induced by SKA3 silencing, while deactivation of the Notch pathway diminished the protumour effects induced by SKA3 overexpression. Moreover, SKA3-silenced osteosarcoma cells exhibited a reduced capacity for xenograft formation in nude mice. In conclusion, SKA3 plays a cancer-enhancing role in osteosarcoma through its effect on the Notch pathway. Reducing the expression of SKA3 could be a potential therapeutic approach for treating osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Camundongos , Animais , Humanos , Camundongos Nus , Cinetocoros/metabolismo , Cinetocoros/patologia , Transdução de Sinais/genética , Linhagem Celular Tumoral , Osteossarcoma/genética , Osteossarcoma/patologia , Proliferação de Células/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia
14.
Zygote ; 32(1): 21-27, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047349

RESUMO

Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule-kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule-kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.


Assuntos
Cinetocoros , Fuso Acromático , Camundongos , Animais , Cinetocoros/metabolismo , Espastina/genética , Espastina/metabolismo , Fuso Acromático/fisiologia , Microtúbulos/metabolismo , Meiose , Oócitos/fisiologia
15.
Genetics ; 226(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37950911

RESUMO

Chromosome segregation is crucial for the faithful inheritance of DNA to the daughter cells after DNA replication. For this, the kinetochore, a megadalton protein complex, assembles on centromeric chromatin containing the histone H3 variant CENP-A, and provides a physical connection to the microtubules. Here, we report an unanticipated role for enzymes required for ß-1,6- and ß-1,3-glucan biosynthesis in regulating kinetochore function in Saccharomyces cerevisiae. These carbohydrates are the major constituents of the yeast cell wall. We found that the deletion of KRE6, which encodes a glycosylhydrolase/ transglycosidase required for ß-1,6-glucan synthesis, suppressed the centromeric defect of mutations in components of the kinetochore, foremost the NDC80 components Spc24, Spc25, the MIND component Nsl1, and Okp1, a constitutive centromere-associated network protein. Similarly, the absence of Fks1, a ß-1,3-glucan synthase, and Kre11/Trs65, a TRAPPII component, suppressed a mutation in SPC25. Genetic analysis indicates that the reduction of intracellular ß-1,6- and ß-1,3-glucans, rather than the cell wall glucan content, regulates kinetochore function. Furthermore, we found a physical interaction between Kre6 and CENP-A/Cse4 in yeast, suggesting a potential function for Kre6 in glycosylating CENP-A/Cse4 or another kinetochore protein. This work shows a moonlighting function for selected cell wall synthesis proteins in regulating kinetochore assembly, which may provide a mechanism to connect the nutritional status of the cell to cell-cycle progression and chromosome segregation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , beta-Glucanas , Saccharomyces cerevisiae/genética , Cinetocoros/metabolismo , Proteína Centromérica A/genética , Glucanos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Centrômero/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética
16.
Am J Med Genet A ; 194(3): e63468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37937525

RESUMO

Primary microcephaly (MCPH) is an autosomal recessive disorder characterized by head circumference of at least two standard deviations below the mean. Biallelic variants in the kinetochore gene KNL1 is a known cause of MCPH4. KNL1 is the central component of the KNL1-MIS12-NSL1 (KMN) network, which acts as the signaling hub of the kinetochore and is required for correct chromosomal segregation during mitosis. We identified biallelic KNL1 variants in two siblings from a non-consanguineous family with microcephaly and intellectual disability. The two siblings carry a frameshift variant predicted to prematurely truncate the transcript and undergo nonsense mediated decay, and an intronic single nucleotide variant (SNV) predicted to disrupt splicing. An in vitro splicing assay and qPCR from blood-derived RNA confirmed that the intronic variant skips exon 23, significantly reducing levels of the canonical transcript. Protein modeling confirmed that absence of exon 23, an inframe exon, would disrupt a key interaction within the KMN network and likely destabilize the kinetochore signaling hub, disrupting mitosis. Therefore, this splicing variant is pathogenic and, in trans with a frameshift variant, causes the MCPH phenotype associated with KLN1. This finding furthers the association of splicing variants as a common pathogenic variant class for KNL1.


Assuntos
Cinetocoros , Microcefalia , Humanos , Proteínas de Ciclo Celular/genética , Cinetocoros/metabolismo , Cinetocoros/patologia , Microcefalia/genética , Microcefalia/patologia , Proteínas Associadas aos Microtúbulos/genética , Mutação
17.
Nucleic Acids Res ; 52(4): 1688-1701, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38084929

RESUMO

Centromeric chromatin plays a crucial role in kinetochore assembly and chromosome segregation. Centromeres are specified through the loading of the histone H3 variant CENP-A by the conserved chaperone Scm3/HJURP. The N-terminus of Scm3/HJURP interacts with CENP-A, while the C-terminus facilitates centromere localization by interacting with the Mis18 holocomplex via a small domain, called the Mis16-binding domain (Mis16-BD) in fission yeast. Fungal Scm3 proteins contain an additional conserved cysteine-rich domain (CYS) of unknown function. Here, we find that CYS binds zinc in vitro and is essential for the localization and function of fission yeast Scm3. Disrupting CYS by deletion or introduction of point mutations within its zinc-binding motif prevents Scm3 centromere localization and compromises kinetochore integrity. Interestingly, CYS alone can localize to the centromere, albeit weakly, but its targeting is greatly enhanced when combined with Mis16-BD. Expressing a truncated protein containing both Mis16-BD and CYS, but lacking the CENP-A binding domain, causes toxicity and is accompanied by considerable chromosome missegregation and kinetochore loss. These effects can be mitigated by mutating the CYS zinc-binding motif. Collectively, our findings establish the essential role of the cysteine-rich domain in fungal Scm3 proteins and provide valuable insights into the mechanism of Scm3 centromere targeting.


Assuntos
Proteínas de Transporte , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Transporte/genética , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cisteína/metabolismo , Cinetocoros/metabolismo , Chaperonas Moleculares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Zinco/metabolismo
18.
Mol Biol Cell ; 35(1): ar3, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903223

RESUMO

Kinesins support many diverse cellular processes, including facilitating cell division through mechanical regulation of the mitotic spindle. However, how kinesin activity is controlled to facilitate this process is not well understood. Interestingly, posttranslational modifications have been identified within the enzymatic region of all 45 mammalian kinesins, but the significance of these modifications has gone largely unexplored. Given the critical role of the enzymatic region in facilitating nucleotide and microtubule binding, it may serve as a primary site for kinesin regulation. Consistent with this idea, a phosphomimetic mutation at S357 in the neck-linker of KIF18A alters the localization of KIF18A within the spindle from kinetochore microtubules to nonkinetochore microtubules at the periphery of the spindle. Changes in localization of KIF18A-S357D are accompanied by defects in mitotic spindle positioning and the ability to promote mitotic progression. This altered localization pattern is mimicked by a shortened neck-linker mutant, suggesting that KIF18A-S357D may cause the motor to adopt a shortened neck-linker-like state that decreases KIF18A accumulation at the plus-ends of kinetochore microtubules. These findings demonstrate that posttranslational modifications in the enzymatic region of kinesins could be important for biasing their localization to particular microtubule subpopulations.


Assuntos
Cinesinas , Cinetocoros , Microtúbulos , Animais , Humanos , Células HeLa , Cinesinas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo
19.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117947

RESUMO

Precise chromosome congression and segregation requires the proper assembly of a steady-state metaphase spindle, which is dynamic and maintained by continuous microtubule flux. NuSAP is a microtubule-stabilizing and -bundling protein that promotes chromosome-dependent spindle assembly. However, its function in spindle dynamics remains unclear. Here, we demonstrate that NuSAP regulates the metaphase spindle length control. Mechanistically, NuSAP facilitates kinetochore capture and spindle assembly by promoting Eg5 binding to microtubules. It also prevents excessive microtubule depolymerization through interaction with Kif2A, which reduces Kif2A spindle-pole localization. NuSAP is phosphorylated by Aurora A at Ser-240 during mitosis, and this phosphorylation promotes its interaction with Kif2A on the spindle body and reduces its localization with the spindle poles, thus maintaining proper spindle microtubule flux. NuSAP knockout resulted in the formation of shorter spindles with faster microtubule flux and chromosome misalignment. Taken together, we uncover that NuSAP participates in spindle assembly, dynamics, and metaphase spindle length control through the regulation of microtubule flux and Kif2A localization.


Assuntos
Segregação de Cromossomos , Cinesinas , Proteínas Associadas aos Microtúbulos , Fuso Acromático , Humanos , Células HeLa , Cinesinas/genética , Cinesinas/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Mitose , Fuso Acromático/genética , Fuso Acromático/metabolismo
20.
J Biol Chem ; 300(1): 105559, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097187

RESUMO

Bub1 is a conserved mitotic kinase involved in signaling of the spindle assembly checkpoint. Multiple phosphorylation sites on Bub1 have been characterized, yet it is challenging to understand the interplay between the multiple phosphorylation sites due to the limited availability of phosphospecific antibodies. In addition, phosphoregulation of Bub1 in Schizosaccharomyces pombe is poorly understood. Here we report the identification of a new Mph1/Mps1-mediated phosphorylation site, i.e., Ser532, of Bub1 in Schizosaccharomyces pombe. A phosphospecific antibody against phosphorylated Bub1-Ser532 was developed. Using the phosphospecific antibody, we demonstrated that phosphorylation of Bub1-Ser352 was mediated specifically by Mph1/Mps1 and took place during early mitosis. Moreover, live-cell microscopy showed that inhibition of the phosphorylation of Bub1 at Ser532 impaired the localization of Bub1, Mad1, and Mad2 to the kinetochore. In addition, inhibition of the phosphorylation of Bub1 at Ser532 caused anaphase B lagging chromosomes. Hence, our study constitutes a model in which Mph1/Mps1-mediated phosphorylation of fission yeast Bub1 promotes proper kinetochore localization of Bub1 and faithful chromosome segregation.


Assuntos
Segregação de Cromossomos , Cinetocoros , Proteínas Serina-Treonina Quinases , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transdução de Sinais , Anáfase , Anticorpos Fosfo-Específicos/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Mitose , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/imunologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...